Abstract

Canfield and Mason have conjectured that for all subgroups $G$ of the automorphism group of the Boolean lattice $B_n$ (which can be regarded as the symmetric group $S_n$), the quotient order $B_n/G$ is a symmetric chain order. We provide a straightforward proof of a generalization of a result of K. K. Jordan: namely, $B_n/G$ is an SCO whenever $G$ is generated by powers of disjoint cycles. In addition, the Boolean lattice $B_n$ can be replaced by any product of finite chains. The symmetric chain decompositions of Greene and Kleitman provide the basis for partitions of these quotients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call