Abstract

The current success of Density Functional Theory applications hinges upon the availability of explicitly density-dependent functionals to self-consistently solve a set of one-electron equations, the Kohn–Sham (KS) equations, which determine the occupied orbitals and its associated electronic density. In KS theory, a local exchange potential is proposed as part of an effective potential. This potential is compared to the exchange operator of the Hartree–Fock theory, which is of a non-local nature. The present paper discusses the variational framework of the KS equations, and the equivalence between both exchange potentials within a correlation-free theory. The common difficulties of current local exchange functionals to correctly simulate the non-locality of the exchange energy density in chemical systems are also analyzed and explained through an exactly solvable model. We give then numerical arguments and conclude by analyzing the performance of various commonly used approximations to exchange functionals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.