Abstract

The Kadometsev-Petviashvili (KP) and modified KP (mKP) equations are retrieved from the first two soliton equations of coupled Korteweg-de Vries (cKdV) hierarchy. Based on the nonlinearization of Lax pairs, the KP and mKP equations are ultimately reduced to integrable finite-dimensional Hamiltonian systems in view of the r-matrix theory. Finally, the resulting Hamiltonian flows are linearized in Abel-Jacobi coordinates, such that some specially explicit quasi-periodic solutions to the KP and mKP equations are synchronously given in terms of theta functions through the Jacobi inversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.