Abstract

AbstractWe employ the Dyson's Lemma of Esnault and Viehweg to obtain a new and sharp formulation of Roth's Theorem on the approximation of algebraic numbers by algebraic numbers and apply our arguments to yield a refinement of the Davenport-Roth result on the number of exceptions to Roth's inequality and a sharpening of the Cugiani-Mahler theorem. We improve on the order of magnitude of the results rather than just on the constants involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.