Abstract
A remarkable class of quadratic irrational elements having both explicit Engel series and continued fraction expansions in the field of Laurent series, mimicking the case of real numbers discovered by Sierpiński and later extended by Tamura, is constructed. Linear integer-valued polynomials which can be applied to construct such class are determined. Corresponding results in the case of real numbers are mentioned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.