Abstract

In this article we review the properties of the 2D Hubbard model by considering at the same time the cases of repulsive and attractive interaction. The paramagnetic solution is studied by means of the composite operator method in the static approximation for the case of half-filling. Some properties of the two models, as the double occupancy and the spin magnetic susceptibility, are calculated for various values of interaction and temperature and compared. In particular, the different role played by thermal fluctuations is analyzed. Analytical and numerical calculations show that there is a critical value of the interaction, Uc, where the system exhibits a metal-insulator transition. At zero temperature it is found that Uc=−W for the negative-U model and Uc≈1.68W for the positive-U model, where W is the band width. At zero temperature, when the strength of the attractive interaction equals the band width, the system exhibits a phase transition to a pair state, where all the electrons are locally paired. The temperature Tp which controls the crossover to the pair state is calculated as a function of U. For strong attractive interaction χ0 is strongly depressed; increases by increasing T and tends to zero as T→TP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.