Abstract
An unconstrained optimization model, applicable to radial deviation measurement, is established for assessing cylindricity errors by the minimum circumscribed cylinder evaluation. The properties of the objective function in the optimization model are thoroughly investigated. On the basis of the modern theory of convex functions, it is strictly proved that the objective function is a continuous and non-differentiable and convex function defined on the four-dimensional Euclidean space R4. Therefore, the minimal value of the objective function is unique and any of its minimal point must be its global minimal point. Thus, any existing optimization algorithm, so long as it is convergent, can be used to solve the objective function to get the wanted values of cylindricity errors by the minimum circumscribed cylinder assessment. An example is given to verify the theoretical results presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.