Abstract

Simple (equally weighted) moving averages are frequently used to estimate the current level of a time series, with this value being projected as a forecast for future observations. A key measure of the effectiveness of the method is the sampling error of the estimator, which this paper defines in terms of characteristics of the data. This enables the optimal length of the average for any steady state model to be established and the lead time forecast error derived. A comparison of the performance of a simple moving average (SMA) with an exponentially weighted moving average (EWMA) is made. It is shown that, for a steady state model, the variance of the forecast error is typically less than 3% higher than the appropriate EWMA. This relatively small difference may explain the inconclusive results from the empirical studies about the relative predictive performance of the two methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.