Abstract

AbstractA small reactor of immobilized papain was used to gain some knowledge about the effect of immobilization upon the reactivity of the enzyme towards one substrate and various types of inhibitors. A buffer solution containing benzoyl–arginine ethyl ester as substrate was run through a small column of papain immobilized by attachment to agarose beads. The pH of the effluent was measured continuously and provided the data used to calculate the substrate conversion during passage through the reactor. The operation of the system was checked by determining the substrate conversion as a function of flow rate. It proved to operate as theory demanded. The rate and extent of inhibition were measured after addition of various inhibitors to the buffer–substrate solution. The following quantities of immobilized papain were found to be equal within ±20% to those of the free enzyme in solution: the overall activity, the Km of benzoyl–arginine ethyl ester, the Ki of the competitive inhibitor benzoylamino‐acetonitrile, the rate of inactivation by chloroacetic acid and by chloroacetamide, the rate of activation by cysteine of the mixed disulfide of papain and cysteine, and the rate of spontaneous reactivation of the KCNO–papain adduct. The inactivation by KCNO proved to be strongly pH dependent. This may explain why the rate of the latter reaction is only 66% of the rate with free enzyme. It is concluded that the rates and equilibrium constants measured in the present reactor system are within ±20% of the values of the dissolved enzyme, provided that the reactions are not strongly pH dependent. Calculation showed there was no diffusion limitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.