Abstract

For , the symmetric functions are defined by urn:x-wiley:dummy:mana201300073:equation:mana201300073-math-0003where , and are non‐negative integers. In this paper, the Schur convexity, geometric Schur convexity and harmonic Schur convexity of are investigated. As applications, Schur convexity for the other symmetric functions is obtained by a bijective transformation of independent variable for a Schur convex function, some analytic and geometric inequalities are established by using the theory of majorization, in particular, we derive from our results a generalization of Sharpiro's inequality, and give a new generalization of Safta's conjecture in the n‐dimensional space and others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.