Abstract

Summary We study the most basic Bayesian forecasting model for exponential family time series, the power steady model (PSM) of Smith, in terms of observable properties of one-step forecast distributions and sample paths. The PSM implies a constraint between location and spread of the forecast distribution. Including a scale parameter in the models does not always give an exact solution free of this problem, but it does suggest how to define related models free of the constraint. We define such a class of models which contains the PSM. We concentrate on the case where observations are non-negative. Probability theory and simulation show that under very mild conditions almost all sample paths of these models converge to some constant, making them unsuitable for modelling in many situations. The results apply more generally to non-negative models defined in terms of exponentially weighted moving averages. We use these and related results to motivate, define and apply very simple models based on directly specifying the forecast distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.