Abstract

We consider the problem of the effective interaction potential in a quantum many-particle system leading to the fractional-power dispersion law. We show that passing to fractional-order derivatives is equivalent to introducing a pair interparticle potential. We consider the case of a degenerate electron gas. Using the van der Waals equation, we study the equation of state for systems with a fractional-power spectrum. We obtain a relation between the van der Waals constant and the phenomenological parameter α, the fractional-derivative order. We obtain a relation between energy, pressure, and volume for such systems: the coefficient of the thermal energy is a simple function of α. We consider Bose—Einstein condensation in a system with a fractional-power spectrum. The critical condensation temperature for 1 < α < 2 is greater in the case under consideration than in the case of an ideal system, where α = 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call