Abstract

Owing to the variability of mine surfaces, it is difficult to obtain the deformation monitoring data of the observation stations by traditional leveling technique. GPS RTK (Real-Time Kinematic) technique was employed to the subsidence observation in this paper, and its main sources of errors including rover pole deflection of the vertical, un-modeled systematic errors (gross error, multipath delay etc.) and the height transformation error, were analyzed systematically. Based on the fundamental theories of spherical fitting and Empirical Mode Decomposition (EMD), the error reduction models were studied exhaustively. And two experiments were done in different environment to test the proposed models. The results show that the proposed methods can achieve a fourth-grade leveling accuracy, with (Root-Mean-Square) RMS in three orthogonal directions (N, E and H) of 4.1, 3.3 and 3.1 mm, respectively, by 3–5min continuous shaking of the observation GPS antenna, fully satisfying for mine surface subsidence deformation monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.