Abstract
The Szego and Avram-Parter theorems give the limit of the arithmetic mean of the values of certain test functions at the eigenvalues and singular values of Toeplitz matrices as the matrix dimension increases to infinity. This paper is concerned with some questions that arise when the test functions do not satisfy the known growth restrictions at infinity or when the test function has a logarithmic singularity within the range of the symbol. Several open problems are listed and accompanied by a few new results that illustrate the delicacy of the matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.