Abstract

Electron energy loss spectroscopy (EELS) has been a powerful tool for high resolution studies of elemental distribution, as well as electronic structure, in thin samples. Its foundation for biological research has been laid out nearly two decades ago, and in the subsequent years it has been subjected to rigorous, but by no means extensive research. In particular, some problems unique to EELS of biological samples, have not been fully resolved. In this article we present a brief summary of recent methodological developments, related to biological applications of EELS, in our laboratory. The main purpose of this work was to maximize the signal to noise ratio (S/N) for trace elemental analysis at a minimum dose, in order to reduce the electron dose and/or time required for the acquisition of high resolution elemental maps of radiation sensitive biological materials.Based on the simple assumption of Poisson distribution of independently scattered electrons, it had been generally assumed that the optimum specimen thickness, at which the S/N is a maximum, must be the total inelastic mean free path of the beam electron in the sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.