Abstract

The optical information recorded in dichromate gelatin (DCG) layers Induced the information of a latent. image Which rnder the action of water and alcohols transforms to a relief or Phase image. The action of water vapours ma appreciably increase diffraction efficiency. judging from the assumPtion that the introduction of multiatomic alcohols favours the retention of water'' moecu1es in a lager in the amount sufficient for deve1oment on its exposure and stabilization of chromium complexes1 a self-development regim has teen worked out. In this case the diffraction efficiency of recorded hc. 1ograms is c''ose to the theoretical limiting value for flatphase r''e c o rdI ng me (J i a. At present the occurence of a Primary latent holographic image (or structure) in dichromated gelatin (DCG) layers has been recognized The diffraction efficiency (DE) detected at a step of holographic recording is low (about 0. 1-IZ). It was shown earlier /j_ 2/ that the treatment bY water vaours or eXPOSUPC Of the layers under conditions of increased humidity results ma growth of DE up to the values enabling the use of DCG to record information in real time /3/j Latent image centres in exposed DC3 layers are predominantly chromium(V) compounds. It is particulary evidenced by the observed correlation between the rate of formation of Cr(V) compounds in a Photo process and the specific change in DE of a latent image /5/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call