Abstract

The ionospheric plasma density on magnetic field lines threading the Jovian rings which are located inside ∼1.8 R J on the jovigraphic equatorial plane, is calculated by using a rotating ion exosphere model. It is found that the bulk of the ionospheric particles on these field lines are on ballistic trajectories. On field lines approximately symmetric with respect to the jovigraphic equator, the ring, which to a first approximation would absorb the population of trapped particles, consequently has little effect. On field lines which are made asymmetric by the higher-order multipoles of Jupiter's field and the tilt of the dipole axis, the rings may have a significant effect. It is suggested that better definition of the rings' atmospheric and ionospheric properties is required to model these localized effects. If the rings are found to be an important plasma source for the inner magnetosphere, the present exospheric model will have to be revised.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call