Abstract

The pore volume, surface area and compressibility of eleven Canadian coals, varying in rank from lignite to semianthracite, have been determined by mercury porosimetry, gas adsorption method and relations derived from helium and mercury densities. The total pore volume was measured in the diameter range of 0.2 nm–2.98 μm, which was subdivided into two groups, namely the micropore region (< 0.0036 μm) and the combined meso- and macropore region (0.0036–2.98 μm). It has been determined that the porosity of the eleven coals studied varies from 2 to 39%. It has been found that the total pore volume, micropore volume, surface area and the apparent compressibility of these coals decrease with increase in the carbon content, or the rank of the coals. The effect of the total pore volume, micropore volume and surface area on chemical reactivity of the coal is discussed separately. A good correlation was obtained between the carbon content and helium density of the coal after correction is made for the mineral content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call