Abstract

A Grundy n-coloring of a finite graph is a coloring of the points of the graph with the non-negative integers smaller than n such that each point is adjacent to some point of each smaller color but to none of the same color. The Grundy number of a graph is the maximum n for which it has a Grundy n-coloring. Characterizations are given of the families of finite graphs G such that for each induced subgraph H of G: (1) the Grundy number of H is equal to the chromatic number of H; (2) the Grundy number of H is equal to the maximum clique size of H; (3) the achromatic number of H is equal to the chromatic number of H; (4) the achromatic number of H is equal to the maximum clique size of H. The definitions are further extended to infinite graphs, and some of the above characterizations are shown to be true for denumerable graphs and locally finite graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.