Abstract

The friction of a sliding tactile contact was measured in an apparatus which simulated a keyboard. Results were taken for several materials. The friction coefficient was found to decrease with increasing load and with increasing speed. Experiments at varying humidity and surface roughness helped to define the friction mechanisms. It is concluded that tactile friction is predominantly adhesive, but modified by liquid bridging between the ridges of the skin and the counterface. Increased bridging due to higher humidity causes increased friction from viscous shearing effects, while increased roughness allows fewer bridges to form, decreasing the friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.