Abstract
We characterize the orthogonal polynomials in a class of polynomials defined through their generating functions. This led to three new systems of orthogonal polynomials whose generating functions and orthogonality relations involve elliptic functions. The Hamburger moment problems associated with these polynomials are indeterminate. We give infinite families of weight functions in each case. The different polynomials treated in this work are also polynomials in a parameter and as functions of this parameter they are orthogonal with respect to unique measures, which we find explicitly. Through a quadratic transformation we find a new exactly solvable birth and death process with quartic birth and death rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.