Abstract

A simplified approach for nonlinear analysis of the load-displacement response of pile groups embedded in multilayered soils is presented in this work. A hyperbolic model is used to capture the relationship between unit skin friction and pile-soil relative displacement developed along the pile-soil interface and the stress-displacement relationship developed at the pile end. Considering interactive effect among piles, the parameters related to the hyperbolic model of an individual pile in a group can be computed. As to the analysis of the response of pile groups, a highly effective iterative computer program is developed using the hyperbolic model of an individual pile in a group. The efficiency and accuracy of the present method is verified using a well-documented field test. Furthermore, a parametric study is conducted to capture the influence of pile spacing and number of piles on the load-settlement response of the pile groups connected to a rigid cap. The pile-group settlement ratio and the pile-group resistance ratio are analyzed to assess the interaction effect among individual piles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call