Abstract
In this paper some recent applications of the so-called Generalized Bernstein polynomials are collected. This polynomial sequence is constructed by means of the samples of a continuous function f on equispaced points of [0; 1] and depends on an additional parameter which yields the remarkable property of improving the rate of convergence to the function f, according with the smoothness of f. This means that the sequence does not suffer of the saturation phenomena occurring by using the classical Bernstein polynomials or arising in piecewise polynomial approximation. The applications considered here deal with the numerical integration and the simultaneous approximation. Quadrature rules on equidistant nodes of [0; 1] are studied for the numerical computation of ordinary integrals in one or two dimensions, and usefully employed in Nyström methods for solving Fredholm integral equations. Moreover, the simultaneous approximation of the Hilbert transform and its derivative (the Hadamard transform) is illustrated. For all the applications, some numerical details are given in addition to the error estimates, and the proposed approximation methods have been implemented providing numerical tests which confirm the theoretical estimates. Some open problems are also introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.