Abstract

In interval analysis, integral inequalities are determined based on different types of order relations, including pseudo, fuzzy, inclusion, and various other partial order relations. By developing a link between center-radius (CR) order relations, it seeks to develop a theory of inequalities with novel estimates. A (CR)-order relation relationship differs from traditional interval-order relationships in that it is calculated as follows: q = q c , q r = q ¯ + q ¯ / 2 , q ¯ − q ¯ / 2 . There are several advantages to using this ordered relationship, including the fact that the inequality terms deduced from it yield much more precise results than any other partial-order relation defined in the literature. This study introduces the concept of harmonical h 1 , h 2 -convex functions associated with the center-radius order relations, which is very novel in literature. Applied to uncertainty, the center-radius order relation is an effective tool for studying inequalities. Our first step was to establish the Hermite−Hadamard H . H inequality and then to establish Jensen inequality using these notions. We discuss a few exceptional cases that could have practical applications. Moreover, examples are provided to verify the applicability of the theory developed in the present study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.