Abstract

We present some new results on a well known distance measure between evolutionary trees. The trees we consider are free 3-trees having n leaves labeled 0,..., n − 1 (representing species), and n − 2 internal nodes of degree 3. The distance between two trees is the minimum number of nearest neighbour interchange (NNI) operations required to transform one into the other. First, we improve an upper bound on the nni-distance between two arbitrary n-node trees from 4n log n [2] to n log n. Second, we present a counterexample disproving several theorems in [13]. Roughly speaking, finding an equal partition between two trees doesn't imply decomposability of the distance finding problem. Third, we present a polynomial-time approximation algorithm that, given two trees, finds a transformation between them of length O(log n) times their distance. We also present some results of computations we performed on small size trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.