Abstract

Four types of nitrogen-rich heterocycles substituted with -NO2, -NHNO2 and -C(NO2)3 explosophoric groups were explored as potential explosives and propellants materials. The calculated crystal density (?0)and the condensed phase heat of formation (?H?0f)for each of the twelve structures investigated shows that all these derivatives possess high (1.834-1.980 g cm-3)(?H?0f) and (605-2130 kJ kg-1) values. Interesting properties such as detonation velocity (D), pressure (P) and specific impulse (Isp) were calculated using the Kamlet-Jacobs method and ISPBKW thermochemical code. Detonation velocity and pressure in excess of 8.44 km s-1 and 32.87 GPa was obtained in all cases. Furthermore, trinitromethyl substituted derivatives shows performance exceeding that of HMX with an estimated D = 9.32-9.72 km s-1 and P = 40.61-43.82 GPa. Some -NO2 and -NHNO2 substituted derivatives were shown to be impact insensitive while retaining good detonation performance and thus are regarded as potential replacement for current RDX -based explosives. Finally, the calculated specific impulse (Isp between 248 and 270 s) of all investigated derivatives indicate that these energetic materials can be considered as possible ingredient in future rocket propellant compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.