Abstract
Splitter sets have been widely studied due to their applications in flash memories, and their close relations with lattice tilings and conflict avoiding codes. In this paper, we give necessary and sufficient conditions for the existence of nonsingular perfect splitter sets, ${B}[-{k}_{1},{k}_{2}]({p})$ sets, where $0\le {k}_{1}\leq {k}_{2}=4$ . Meanwhile, constructions of nonsingular perfect splitter sets are given. When perfect splitter sets do not exist, we present four new constructions of quasi-perfect splitter sets. Finally, we give a connection between nonsingular splitter sets and Cayley graphs, and as a byproduct, a general lower bound on the maximum size of nonsingular splitter sets is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.