Abstract
AbstractExchangeable copulas are used to model an extra-binomial variation in Bernoulli experiments with a variable number of trials. Maximum likelihood inference procedures for the intra-cluster correlation are constructed for several copula families. The selection of a particular model is carried out using the Akaike information criterion (AIC). Profile likelihood confidence intervals for the intra-cluster correlation are constructed and their performance are assessed in a simulation experiment. The sensitivity of the inference to the specification of the copula family is also investigated through simulations. Numerical examples are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Dependence Modeling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.