Abstract

The rock mass quality Q-value was originally developed to assist in the empirical design of tunnel and cavern reinforcement and support, but it has been used for several other tasks in rock engineering in recent years. This paper explores the application of Q and its six component parameters, for prediction, correlation and extrapolation of site investigation data, and for obtaining first estimates of some input data for both jointed distinct element and continuum-approximation modelling. Parameters explored here include P-wave velocity, static modulus of deformation, support pressure, tunnel deformation, Lugeon-value, and the possible cohesive and frictional strength of rock masses, undisturbed, or as affected by underground excavation. The effect of depth or stress level, and anisotropic strength, structure and stress are each addressed, and practical solutions suggested. The paper concludes with an evaluation of the potential improvements in rock mass properties and reduced support needs that can be expected from state-of-the-art pre-injection with fine, cementicious multi-grouts, based on measurements of permeability tensor principal value rotations and reductions, caused by grout penetration of the least favourable joint sets. Several slightly improved Q-parameter ratings form the basis of the predicted improvements in general rock mass properties that can be achieved by pre-grouting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.