Abstract
The main goals of this paper are to provide an introduction to the idea of interval-valued [Formula: see text]-polynomial [Formula: see text]-type convex functions and to investigate the algebraic properties of this type of function. This new generalization aims to show the existence of new Hermite–Hadamard inequalities for the recently presented class of interval-valued [Formula: see text]-polynomials of [Formula: see text]-type convex describing the [Formula: see text]-fractional integral operator. In the classical sense, some special cases are figured out, and the two examples are also given. There are some recently discovered inequalities for interval-valued functions that are regulated by fractional calculus applicable to interval-valued [Formula: see text]-polynomial [Formula: see text]-type convexity. The results obtained show that future research will be simple to implement, highly efficient, feasible, and extremely precise in its investigation. It could also help solve modeling problems, optimization problems, and fuzzy interval-valued functions that involve both discrete and continuous variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.