Abstract

<abstract><p>In this paper, we introduce novel extensions of the reversed Minkowski inequality for various functions defined on time scales. Our approach involves the application of Jensen's and Hölder's inequalities on time scales. Our results encompass the continuous inequalities established by Benaissa as special cases when the time scale $ \mathbb{T} $ corresponds to the real numbers (when $ \mathbb{T = R} $). Additionally, we derive distinct inequalities within the realm of time scale calculus, such as cases $ \mathbb{ T = N} $ and $ q^{\mathbb{N}} $ for $ q > 1 $. These findings represent new and significant contributions for the reader.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.