Abstract

Our work in this paper is based on the reverse Hölder-type dynamic inequalities illustrated by El-Deeb in 2018 and the reverse Hilbert-type dynamic inequalities illustrated by Rezk in 2021 and 2022. With the help of Specht’s ratio, the concept of supermultiplicative functions, chain rule, and Jensen’s inequality on time scales, we can establish some comprehensive and generalize a number of classical reverse Hilbert-type inequalities to a general time scale space. In time scale calculus, results are unified and extended. At the same time, the theory of time scale calculus is applied to unify discrete and continuous analysis and to combine them in one comprehensive form. This hybrid theory is also widely applied on symmetrical properties which play an essential role in determining the correct methods to solve inequalities. As a special case of our results when the supermultiplicative function represents the identity map, we obtain some results that have been recently published.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.