Abstract
In this paper, we have developed new estimates of some estimates involving the Berezin norm and Berezin number of bounded linear operators defined on a reproducing kernel Hilbert space HΩ. The uniqueness or novelty of this article consists of new estimates of Berezin numbers for different types of operators. These estimates improve the upper bounds of the Berezin numbers obtained by other similar papers. We give several upper bounds for berr(S*T), where T,S∈B(HΩ) and r≥1. We also present an estimation of ber2r∑i=1dTi where Ti∈B(HΩ), i=1,d¯ and r≥1. Some of the obtained inequalities represent improvements to earlier ones. In this work, the ideas and methodologies presented may serve as a starting point for future investigation in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.