Abstract
AbstractGushel–Mukai (GM) sixfolds are an important class of so‐called Fano‐K3 varieties. In this paper, we show that they admit a multiplicative Chow–Künneth decomposition modulo algebraic equivalence and that they have the Franchetta property. As side results, we show that double Eisenbud‐Popescu‐Walter (EPW) sextics and cubes have the Franchetta property, modulo algebraic equivalence, and some vanishing results for the Chow ring of GM sixfolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.