Abstract

Abstract The formative ability of ectoplasm in situ and in isolation from the living cell is shown to be an autodynamic morphogenetic factor creating sui generis membrane structure in species. Heteromorphic division and formation of specific aberrants, which differ from the parent cell by characters which have been used to separate genera, may be caused by molecular changes in ectoplasm as a primary factor. The subpellicular vacuom reticulum in Gyrodinium and other genera originates possibly from the upset metabolism of protoplasm. It is purely phenotypic. Oxygen deficiency induces in Prorocentrum endogenous cysts and dwarf-cell formation, a plasmolysis-like effect. The morphological norm in dinoflagellates is maintained also by the angle of nuclear fission and ensuing cytoplasm disposition. It is constant in sea and culture in some species, almost constant in sea but multivariable in culture in other species. The static form in some species is related to a single method of division (Exuviaella marina). Polymorphy of Exuviaella, Prorocentrum and other genera is induced by the presence of many types of divisions, which also favours an abundance of aberrants. “Osmomorphoses” originate in critical salinity-temperature conditions owing to flexibility of the pellicle in Gymnodinioideae; it is prevented by the membrane rigidity in the thecate forms. Flexibility of membrane in juvenile cells favours exogenous division. Rigid membranes of adult cells inhibit exogenous, favour endogenous fission. “Cyclomorphoses”, “phagomorphoses” (feeding habit) and different types of aberrants are useful to complete classification in modern and fossil dinoflagellates since morphogenesis rules work regardless of time and space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.