Abstract

Let $p^k m^2$ be an odd perfect number with special prime $p$. In this article, we provide an alternative proof for the biconditional that $\sigma(m^2) \equiv 1 \pmod 4$ holds if and only if $p \equiv k \pmod 8$. We then give an application of this result to the case when $\sigma(m^2)/p^k$ is a square.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.