Abstract

A simple polygon that either has equal all sides or all interior angles is called a semi-regular nonagon. In terms of this definition, we can distinguish between two types of semi-regular polygons: equilateral polygons (that have equal all sides and different interior angles) and equiangular polygons (that have equal interior angles and different sides). Unlike regular polygons, one characteristic element is not enough to analyze the metric properties of semi-regular polygons, and an additional one is needed. To select this additional characteristic element, note that the following regular triangles can be inscribed to a semi-regular equilateral nonagon by joining vertices: ∆A1 A4A7, △ A2 A5 A8, △A3 A6 A9. Now have a look at triangle △A1 A4A7. Let us use the mark φ=∡(a,b1) to mark the angle between side a of the semi-regular nonagon and side b1 of the inscribed regular triangle. In interpreting the metric properties of a semi-regular equilateral nonagon, in addition to its side, we also use the angle that such side creates with the side of one of the three regular triangles that can be inscribed to such semi-regular nonagon. We consider the way in which convexity, possibility of construction, surface area, and other properties depend on a side of the semi-regular nonagon and angle φ=∡(a,b1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call