Abstract

We show that ||u*u - v*v|| \leq ||u - v|| for partial isometries u and v. There is a stronger inequality if both u and v are extreme points of the unit ball of a C*-algebra, and both inequalities are sharp. If u and v are partial isometries in a C*-algebra A such that ||u - v|| < 1, then u and v are homotopic through partial isometries in A. If both u and v are extremal, then it is sufficient that ||u - v|| < 2. The constants 1 and 2 are both sharp. We also discuss the continuity points of the map which assigns to each closed range element of A the partial isometry in its canonical polar decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.