Abstract
The genetic code is known to have a high level of error robustness and has been shown to be very error robust compared to randomly selected codes, but to be significantly less error robust than a certain code found by a heuristic algorithm. We formulate this optimization problem as a Quadratic Assignment Problem and use this to formally verify that the code found by the heuristic algorithm is the global optimum. We also argue that it is strongly misleading to compare the genetic code only with codes sampled from the fixed block model, because the real code space is orders of magnitude larger. We thus enlarge the space from which random codes can be sampled from approximately 2.433 × 10(18) codes to approximately 5.908 × 10(45) codes. We do this by leaving the fixed block model, and using the wobble rules to formulate the characteristics acceptable for a genetic code. By relaxing more constraints, three larger spaces are also constructed. Using a modified error function, the genetic code is found to be more error robust compared to a background of randomly generated codes with increasing space size. We point out that these results do not necessarily imply that the code was optimized during evolution for error minimization, but that other mechanisms could be the reason for this error robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.