Abstract
In this study, we discuss some limit analysis of a viscous capillary model of plasma, which is expressed as a so‐called the compressible Navier‐Stokes‐Poisson‐Korteweg equation. First, the existence of global smooth solutions for the initial value problem to the compressible Navier‐Stokes‐Poisson‐Korteweg equation with a given Debye length λ and a given capillary coefficient κ is obtained. We also show the uniform estimates of global smooth solutions with respect to the Debye length λ and the capillary coefficient κ. Then, from Aubin lemma, we show that the unique smooth solution of the 3‐dimensional Navier‐Stokes‐Poisson‐Korteweg equations converges globally in time to the strong solution of the corresponding limit equations, as λ tends to zero, κ tends to zero, and λ and κ simultaneously tend to zero. Moreover, we also give the convergence rates of these limits for any given positive time one by one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.