Abstract

We identify a class of Linear Complementarity Problems (LCPs) that are solvable in strongly polynomial time by Lemke's Algorithm (Scheme 1) or by the Parametric Principal Pivoting Method (PPPM). This algorithmic feature for the class of problems under consideration here is attributable to the proper selection of the covering vector in Scheme 1 or the parametric direction vector in the PPPM which leads to solutions of limited and monotonically increasing support size; such solutions are sparse. These and other LCPs may very well have multiple solutions, many of which are unattainable by either algorithm and thus are said to be elusive. The initial conditions imposed on the new matrix class identified in Sect. 2 are subsequently relaxed in later sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.