Abstract

When fresh human erythrocytes or their ghosts are incubated with Ca + IAA (iodoacetic acid) + adenosine, K permeability increases; K permeability also increases when energy-depleted cells or their ghosts are incubated with Ca alone. Na transport decreases or remains unaltered in both situations. The Ca-induced increase in K permeability in the depleted cell system is qualitatively similar to that seen in the fresh cell system and furnishes a means for studying the metabolic dependence of calcium's action. Studies with the depleted system suggest that the normal refractiveness of the cell to calcium is provided by a metabolically dependent substrate. Removal of this substrate allows Ca to enter the cell and exert its effect. By using (47)Ca, a maximum value was obtained (3-7 x 10(-6) moles/liter of red blood cells) for the quantity of calcium that is taken up by the cell and responsible for the change in K permeability. Measurements of the unidirectional fluxes of K, obtained during the time Ca increases K permeability, appear to satisfy the flux ratio equation for passive diffusion through a membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.