Abstract
In the theory of special functions, the $k$-Pochhammer symbol is a generalization of the Pochhammer symbol. With the help of the $k$-Pochhammer symbol, we introduce and study a new generalization of the $k$-Horn hypergeometric functions such as, ${G}_{1}^{k}$, ${G}_{2}^{k}$ and ${G}_{3}^{k}$. Furthermore, several investigations have been carried out for some important recursion formulae for several one variable and two variables $k$-hypergeometric functions. In the light of these studies, we introduce some important recursion formulae for several newly generalized $k$-Horn hypergeometric functions. Finally, we present several relations between some $k$-Horn hypergeometric functions ${G}_{1}^{k}$, ${G}_{2}^{k}$ and ${G}_{3}^{k}$, and $k$-Gauss hypergeometric functions $_{2}{F}_{1}^{k}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.