Abstract

This paper is concerned with the numerical solution of a Karush---Kuhn---Tucker system. Such symmetric indefinite system arises when we solve a nonlinear programming problem by an Interior-Point (IP) approach. In this framework, we discuss the effectiveness of two inner iterative solvers: the method of multipliers and the preconditioned conjugate gradient method. We discuss the implementation details of these algorithms in an IP scheme and we report the results of a numerical comparison on a set of large scale test-problems arising from the discretization of elliptic control problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.