Abstract

Some inverse problems of Stokes flow, including noisy boundary conditions, unknown angular velocity, and dynamic viscous constant identification are studied in this paper. The interpolation equations for those inverse problems are constructed using the method of fundamental solutions (MFS). Based on the noise addition technique, the inverse problems are solved using MFS and a Kalman filter. It is seen from numerical experiments that these approaches and algorithms are valid and have strong robustness and high accuracy in solving inverse Stokes problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.