Abstract

In this paper, we have examined a particular case of coherent states, defined so that their structure constants depend only on the products of the energy eigenvalues of the examined systems. In this manner, we have built all three kinds of coherent states (Barut–Girardello, Klauder–Perelomov, and Gazeau–Klauder). From the equation of the unitary operator decomposition, we have highlighted and used a so-called fundamental integral, to obtain some new integrals involving Meijer’s and hypergeometric functions. All calculations are made using the properties of the diagonal operator ordering technique. This is implicitly proved that the coherent state technique can be useful not only in different branches of physics (quantum mechanics, quantum optics, quantum information theory, and so on) but also in the deduction of new integrals involving generalized Meijer’s and hypergeometric functions. This approach can be considered as suitable “feedback” from physics to mathematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.