Abstract

In this paper, the stability of a class of marginally stable SISO systems is studied by applying a single one delay block as a feedback controller. More precisely, we consider an open-loop system with no zeros and whose poles are located exactly on the imaginary axis. Furthermore, a control law formed uniquely by a proportional gain and a delayed behavior is proposed for its closed-loop stabilization. The main ideas are based on a detailed analysis of the characteristic quasi-polynomial of the closed-loop system as the controller parameters (gain, delay) are varied. More precisely, by using the Mikhailov stability criterion, for a fixed delay value, we compute some gain margin guaranteeing the closed-loop stability. The particular case when the characteristic roots of the open-loop system are equidistantly distributed on the imaginary axis is also addressed. Finally, an illustrative example shows the effectiveness of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.