Abstract

Aurora B kinase is essential in the process of mitosis, and its overexpression has been reported to be associated with a number of solid tumors. We therefore carried out molecular docking, molecular dynamics, and molecular mechanics Poisson-Boltzmann/surface area (MM-PBSA) calculations on several structurally diverse inhibitors (pentacyclic, pyrimidine, quinazoline, and pyrrolopyridine derivatives) and Aurora B kinase to explore the structural and chemical features responsible for the binding recognition mechanism. Molecular simulations reveal that the binding site mainly consists of six binding regions (sites A-F). We have identified that sites B and C are required for optimum binding in Aurora B-inhibitor complexes, sites A and F are needed to improve pharmacokinetic properties, while sites D and E lead to enhanced stability. We verified that hydrogen bonding to the hinge region and hydrophobic contact with the conserved hydrophobic pocket are of critical importance in the systems studied. Specifically, the amino acids Glu171, Phe172, and Ala173 in the hinge region and Leu99, Val107, and Leu223 in the conserved hydrophobic pocket probably account for the high binding affinities of these systems, as shown by hydrogen-bonding analysis and energy decomposition analysis. Hydrophobic contact with Phe172 is also in agreement with experimental data. In addition, the MM-PBSA calculations reveal that the binding of these inhibitors to Aurora B kinase is mainly driven by van der Waals/nonpolar interactions. The findings of this study should help to elucidate the binding pattern of Aurora B inhibitors and aid in the design of novel active ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.