Abstract

The precipitation patterns of 6 keV protons at 10° and 80° pitch angles have been mapped at altitudes <1500 km from the ESRO 1A and 1B spacecraft. Equatorward of the trapping boundary, a region of isotropic precipitation, bounded on its equatorward border by a region of anisotropic (depleted loss cone) precipitation, is always observed. The latitudinal location of this transition appears to be nearly spatially coincident with the plasmapause. Similar precipitation patterns are shown to exist for higher energy protons. The general absence of enhanced precipitation at the plasmapause suggests that the inner boundary of the ring current is not usually produced by an enhanced proton pitch angle diffusion process. The isotropic precipitation observed beyond the plasmapause is most consistent with the occurence of an electrostatic instability throughout the ring current zone. It is doubtful whether the proposed cold Li plasma seeding experiments beyond the plasmapause could significantly increase the observed natural proton precipitation rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.