Abstract

AbstractSome multipoint iterative methods without memory, for approximating simple zeros of functions of one variable, are described. For m > 0, n ≧ 0, and k satisfying m + 1 ≧ k > 0, there exist methods which, for each iteration, use one evaluation of f, f′, … f(m) followed by n evaluations of f(k), and have order of convergence m + 2n + 1. In particular, there are methods of order 2(n + 1) which use one function evaluation and n + 1 derivative evaluations per iteration. These methods naturally generalize the known cases n = 0 (Newton's method) and n = 1 (Jarratt's fourth-order method), and are useful if derivative evaluations are less expensive than function evaluations. To establish the order of convergence of the methods we prove some results, which may be of independent interest, on orthogonal and “almost orthogonal” polynomials. Explicit, nonlinear, Runge-Kutta methods for the solution of a special class of ordinary differential equations may be derived from the methods for finding zeros of functions. The theoretical results are illustrated by several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.